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Abstract: An in-shoe pressure measurement (IPM) system can be used to measure center 

of pressure (COP) locations, and has fewer restrictions compared to the more conventional 

approach using a force platform. The insole of an IPM system, however, has its own 

coordinate system. To use an IPM system along with a motion capture system, there is thus 

a need to align the coordinate systems of the two measurement systems. To address this 

need, the current study examined two different approaches—rigid body transformation and 

nonlinear mapping (i.e., multilayer feed-forward neural network (MFNN))—to express 

COP measurements from an IPM system in the coordinate system of a motion capture 

system. Ten participants (five male and five female) completed several simulated manual 

material handling (MMH) activities, and during these activities the performance of the two 

approaches was assessed. Results indicated that: (1) performance varied between MMH 

activity types; and (2) a MFNN performed better than or comparable to the rigid body 

transformation, depending on the specific input variable sets used. Further, based on the 

results obtained, it was argued that a nonlinear mapping vs. rigid body transformation 

approach may be more effective to account for shoe deformation during MMH or 

potentially other types of physical activity. 
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1. Introduction 

Tracking center of pressure (COP) locations under the shoe or the foot has broad utility/application 

in the fields of biomechanics and motor control. COP is the point of application of ground reaction 

forces (GRFs) that reflect the net force exerted by or on the whole body [1]. In combination with body 

segmental kinematics and GRFs, COP locations are required to compute joint kinetics using the 

bottom-up inverse dynamics approach [1,2]. Furthermore, several COP-based measures have been 

examined in numerous studies [3,4], to assess and understand postural control during, for example, 

quiet stance and gait, and to assess influences or differences related to age, gender, environmental 

conditions, health status, etc. 

A force platform—a conventional system used for COP measurement—is typically fixed in the 

floor or other structure (e.g., stairs, walkways). Hence, and as highlighted earlier [5,6], the size, 

placement, and/or number of force platforms can restrict an individual’s foot placement and/or the 

monitoring of multiple footsteps. More generally, a force platform can be difficult to use outside of a 

laboratory setting. To overcome such limitations, several wearable measurement systems have been 

introduced, such as instrumented shoe (IS) systems [7–9] and in-shoe pressure measurement (IPM) 

systems [5,10–12]. IS systems are typically based on two tri-axial load transducers attached externally 

to the shoe. This allows for measuring loads between the shoe (with the transducer) and the ground, and 

which can potentially provide data directly comparable to COP measurements obtained from a force 

platform. Externally attached transducers, however, increase both shoe height and sole rigidity [6,8]. 

To the authors’ knowledge, no study has formally examined how an IS system interacts with different 

surfaces and terrains (e.g., the effects of increased shoe height and sole rigidity on slip/trip risks). An 

IPM system uses a pressure-sensitive matrix (i.e., insole) that can be fitted into an individual’s shoe. 

The insole captures the plantar pressure distribution below the foot sole, and which can be easily 

processed to obtain the COP between the foot and the insole. Earlier studies have demonstrated that 

one commercial IPM system, the Pedar®-X, has good measurement accuracy, precision, and 

repeatability [13,14]. Using an IPM system, vs. an IS system, therefore appears to be more practical 

and valid for use in diverse environments, particularly since the former can be used with an 

individual’s own shoe(s). 

The insole of an IPM system has its own coordinate system. As such, using an IPM system along 

with a motion capture system (such as for assessing segmental loads through inverse dynamics) 

requires aligning the coordinate systems of both measurement systems. To define a transformation 

matrix between the two coordinate systems, existing studies have generally assumed a rigid body 

transformation, and used either direct or indirect methods. The direct method defines a coordinate 

system for the IPM system by locating insole sensors using a pointer with reflective markers [15], and 

thus does not require a force platform. The indirect method defines a transformation matrix by fitting 

COP locations between a force platform and the IPM system, either manually [10] or optimally [16–18].  

In the studies noted, normal gait was a common dynamic activity of interest. Interestingly,  

Chumanov et al. [17] reported relatively larger root mean square errors (RMSE) during the starting 

(0%–10%) and ending stance phases (80%–100%) of gait (RMSE = ~34–57 mm and ~7–15 mm in the 

anterio-posterior (AP) and medio-lateral (ML) directions, respectively), compared to the mid-stance 

phase (10%–80%) (RMSE = ~8–10 mm and ~4–7 mm in the AP and ML directions, respectively). 



Sensors 2014, 14 16996 

 

 

This suggests that the rigid body transformation assumption may be less valid, since a shoe can be bent 

and/or otherwise deformed to varying degrees during different activities.  

In the current work, we examined the performance of an optimally-defined rigid body transformation 

matrix between the coordinate systems of an IPM and motion capture systems. The activities of 

interest were those involved in manual material handling (MMH), assuming potential use of an IPM 

system in the context of occupational ergonomics and safety. Furthermore, and without the assumption 

of rigid body transformation, four different nonlinear functions were investigated that can map IPM 

data to COP obtained from a force platform. Specifically, we used a multilayer, feed-forward  

neural network (MFNN) as a mapping function with each of four different sets of input variables 

(extracted from IPM system outputs). The performance of the mapping functions was compared to an 

optimally-defined rigid body transformation.  

2. Methods 

2.1. Participants and Experimental Procedures 

Ten young participants (19–29 years old, 5 males and 5 females) completed the study. Their mean 

(SD: range), stature, body mass, and foot length were 171.5 (6.9: 164–183) cm, 76.1 (13.2: 62.5–104.6) kg, 

and 26.8 (1.4: 24.5–28) cm, respectively. All participants reported being healthy, physically active, and 

having no current musculoskeletal injuries that limit their normal daily activities. Prior to any data 

collection, participants completed an informed consent procedure approved by the Virginia Tech 

Institutional Review Board.  

Participants completed each of four simulated MMH activities that were intended to represent  

a range of occupational demands. A complete description of these activities was presented  

earlier [19], and as such are only summarized here. All activities were performed with a box  

(width × length × depth = 33 × 48.3 × 24 cm) with mass set to 20/15% of individual body mass for 

male/female participants. The specific MMH activities were: (a) symmetric lifting and lowering from 

ground to individual elbow height, and vice versa (LLGROUND); (b) symmetric lifting and lowering 

from a table adjusted to individual knuckle height to individual elbow height and vice versa 

(LLKNUCKLE); (c) asymmetric lifting and lowering from/to tables located at the side of a participant and 

adjusted to individual knuckle height (LLASYM); and (d) pushing and pulling away from/toward the 

body (PushPull). The presentation order of activities was randomized, and two trials of each activity 

were completed. Prior to data collection, participants were allowed to practice each MMH type until 

they felt comfortable and competent with each. During each trial, participants were asked to keep each 

foot on a separate force platform, but were allowed to move each foot freely over the force platform 

surface. Further, participants performed all activities using self-selected comfortable styles and speeds, 

and were allowed to change their working styles and speeds in each trial as desired.  

2.2. Instrumentation 

External foot kinetics were measured using two force platforms (AMTI OR6-7-1000, Watertown, 

MA, USA) and a commercial IPM system (Pedar®-X, Novel Gmbh, Munich, Germany) with three 

different insole sizes covering shoe sizes of 24.8–28.3 cm. Each insole contained 99 pressure-sensitive 
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capacitive sensors. Of note, prior to data collection, each insole was calibrated using a trublu® 

calibration device (Novel Gmbh, Munich, Germany) as recommended by the manufacturer. The force 

platforms and the IPM system were sampled at 960 Hz and 60 Hz, respectively. Force platform outputs 

were low-pass filtered (15 Hz cut-off; 2nd order zero-lag Butterworth) and down-sampled to 60 Hz. 

Foot kinematics were captured at 60 Hz, using a 7-camera optical motion capture system (Vicon MX, 

Vicon Motion Systems Inc., Denver, CO, USA). Passive reflective markers were placed bilaterally on 

the calcaneus and 1st and 5th metatarsal heads, and a cluster of three markers was placed over the side 

of each shoe. Prior to the MMH activities, the 1st and 5th metatarsal head markers were removed after 

being referenced to the corresponding cluster, and removed markers were reconstructed using the 

clusters [20]. During data collection, the IPM system was synchronized with other systems via a  

TTL pulse (Pedar® Sync Box). All off-line data processing was completed using MATLAB 7 

(MathworkTM Inc., Natick, MA, USA). When the vertical GRF from the force platform was <20 N, the 

foot was considered off the ground and associated COP data were excluded from subsequent analyses 

described below.  

2.3. Transformation Matrix,  between the Insole and the Shoe Coordinate System 

COP locations from the IPM system (i.e., expressed in the insole coordinate system) can be 

transformed to the global (i.e., motion capture) coordinate system [15] using: = ,  (1)

where 	 is a 3 × 1 position vector at the ith time frame. ,  and  are 4 × 4 transformation 

matrices, respectively from the shoe to the global coordinate system and from the insole to the shoe 
coordinate system. Using reflective markers placed on the shoe, ,  can be defined as: 

, = 0 0 0 1  (2)

with = 0.5( + ) −‖0.5( + ) − ‖   

= ( − ) × ( − )‖( − ) × ( − )‖   = ×   

where  is a 3 × 1 origin vector for the shoe coordinate system and set equal to  (Z coordinate 

is zero since COP is planar data). ,  and  are 3 × 1 position vectors of the 1st and 5th 

metatarsals, and the heel, respectively.  

Pre-multiplying ,  in Equation (1) enables defining a transformation matrix,  

between ,  and  (Figure 1), and  can be solved in two different 

ways. In the first approach, and similar to existing studies [16–18],  can be assumed as a  

rigid-body homogeneous transformation matrix: = 0 0 0 1  (3) 
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where  is a 3 × 3 rotation matrix and  is a 3 × 1 translation vector. As in the aforementioned 

studies, the parameters of the rotation matrix and translation vector can be determined using a numerical 

search algorithm. Here, instead of a numerical search, we simply considered ,  

and  as corresponding clusters of points in different reference frames, and applied a 

procedure to determine those rigid body transformation parameters in a least-squares sense, using a 

singular value decomposition [20]. This transformation method is hereafter referred to as RIGID.  

Figure 1. Overview of current transformation problem, specifically involving defining a 

transformation matrix,  between 	  and 	 . Here, MT1, 

MT5, and HEEL, respectively, indicate passive reflective markers on the 1st and 5th metatarsal 

heads and calcaneus. The subscripts Shoe/Global on the axis labels indicate the shoe/global 

coordinate system. 

 

In the second approach, and without assuming a rigid body transformation, we can consider  

as a function that maps insole pressure measures to , . Given that a specific 

functional relationship is unknown, we used a generalized mapping approach, specifically a multilayer, 

feed-forward neural network (MFNN) with one hidden layer and sigmoid transfer function (see [21] 

for more details). As there are numerous potential ways to define input variables to a MFNN from 

pressure insole measures, we considered four, simple sets of input variables that could help in selecting 

input variables for future work (note that each is obtained separately for the two feet):  
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 	 	( )	 	 	 	 , : 99 pressure 

measures from the insole are converted to forces, and are then divided by half of a 

participant’s body mass. The dimension of these forces is n × 99, where n is the length of 

each COP time series. To reduce the column dimension, principal component analysis  

(PCA)—a well-established statistical dimension reduction technique [22]—is performed, and 

the first PCs that cumulatively explained >90% of variance are selected. The dimension of 	  is n × 2, excluding Z coordinate data. The MFNN with this set of input variables is 

referred to as MFNN1. 

 	 , 	 	 	 	 , : The total force (n × 1 vector) 

from the pressure insole is divided by half of a participant’s body mass. The ratio of active 

pressure sensors is computed by dividing the number of active pressure sensors (i.e., pressure 

value > 0) in each time frame by the total number of pressure sensors (i.e., 99). The MFNN 

with this set of input variables is referred to as MFNN2. 

 	 , 	 	 	 	 	 	 	 	 , : 

To capture the regional distribution of pressures on the insole, along with the total force 

described above, the insole is divided into eight regions based on work by Savelberg and de 

Lange [5]: the lateral and medial parts of the heel, two areas in the mid-foot, three areas in the 

forefoot, and one area for the toes. The ratio of active pressure sensors in each region is 

obtained (n × 8), so that the total dimension of input variables becomes n × 11. The MFNN 

with this set of input variables is referred to as MFNN3. 

 	and	 	 	 	 	 	 	 	 	 , : 

Both forces and ratios are obtained from the eight noted foot regions (i.e., n × 16), so that the 

total dimension of input variables becomes n × 18. The MFNN with this set of input variables 

is referred to as MFNN4. 

2.4. Training and Validation of  

For each of the five transformation methods (RIGID, and MFNN1-4),  was trained and tested 

using two-fold cross-validation at the participant level. As such, the training and the testing were 

performed twice, using one replication of simple lifting activities (LLGROUND and LLKNUCKLE), and with 

the other replication of all MMH tasks for testing. Of note, the simple lifting activities were used for 

training, since LLGROUND and LLKNUCKLE can respectively represent dynamic and more static activities, 

and can be easily performed. For the MFNNs, hidden layer sizes from 3 to 20 were considered during 

the training, and the final size was selected based on minimizing root mean square (RMS) errors. The 

final size selected varied from 4 to 20, depending on participants and foot side. To examine the method 

validity, three comparative measures were obtained for each MMH task trial, separately in the  

AP and the ML directions, and in the shoe coordinate system: (1) RMS error (RMSE), where errors 

were the difference between  estimated using  defined by a given method and , ; (2) peak absolute error (PAE); and (3) the coefficient of determination (r2).  
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2.5. Statistical Analyses 

Separate three-way, repeated measures of analyses of variance (ANOVAs) were performed on the 

comparative measures, to examine if performance in mapping  to ,  was 

affected by the four MMH task types (Task), foot side (Foot; i.e., left vs. right), and the specific 

method used for  (Method). All comparative measures were log-transformed prior to statistical 

analyses to achieve normally distributed residuals. Significant effects were examined further using 

Tukey’s HSD post-hoc tests. All statistical analyses were complete using JMP® Pro 11.0 (SAS 

Institute Inc., Cary, NC, USA) with statistical significance determined when p < 0.05. All summary 

data are presented as means (95% Confidence Intervals). 

3. Results 

A summary of ANOVA results for all comparative measures is presented in Table 1. Only the main 

and interactive effects of Task and Method were significant. As shown in Figures 1–3, comparative 

measures indicated relatively poorer performance during asymmetrical lifting/lowering vs. the other 

MMH tasks. In addition, for a given task the performance of a MFNN significantly varied depending 

on input variable sets, and MFNN3 generally outperformed the other MFNN models. Figures 2–4 

further highlight that the RIGID method produced comparable results to MFNN3 in some cases. 

Interestingly, the RIGID method (vs. MFNN methods) yielded significantly higher r2
 values for 

asymmetrical lifting/lowering. 

Table 1. Summary of ANOVA results (F value (p)) for the main and interaction effects of 

Task, Side, and Method on each comparative measure (significant effects are in bold). 

Measure 
Task (T) 

F(3,54) 

Side (S) 

F(1,18) 

Method (M)

F(4,72) 

T × S 

F(3,54) 

T × M 

F(12,216) 

S × M 

F(4,72) 

T × S × M 

F(12,216) 

RMSEML 
232.06 

(<0.0001) 

0.38 

(0.54) 

20.61 

(<0.0001) 

1.67 

(0.18) 

4.00 

(<0.0001) 

1.05 

(0.39) 

0.48 

(0.93) 

RMSEAP 
72.55 

(<0.0001) 

0.01 

(0.93) 

10.97 

(<0.0001) 

0.26 

(0.85) 

8.34 

(<0.0001) 

0.26 

(0.90) 

0.97 

(0.48) 

PAEML 
153.77 

(<0.0001) 

1.35 

(0.26) 

9.74 

(<0.0001) 

2.61 

(0.06) 

2.33 

(0.0081) 

1.60 

(0.19) 

0.34 

(0.98) 

PAEAP 
56.77 

(<0.0001) 

0.00 

(0.99) 

6.85 

(<0.0001) 

0.49 

(0.69) 

5.03 

(<0.0001) 

0.15 

(0.96) 

1.41 

(0.16) 

r2
ML 

14.53 

(<0.0001) 

0.15 

(0.71) 

3.61 

(0.0097) 

0.79 

(0.51) 

5.65 

(<0.0001) 

0.21 

(0.93) 

0.82 

(0.63) 

r2
AP 

25.38 

(<0.0001) 

0.43 

(0.52) 

4.00 

(0.0056) 

0.29 

(0.83) 

3.55 

(<0.0001) 

0.81 

(0.52) 

0.97 

(0.48) 
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Figure 2. Root mean square errors (RMSE) in the anterio-posterior (AP: top) and the 

medio-lateral (ML: bottom) directions for each MMH task type, with respect to the 

different methods used for . Note, see the methods section for detailed descriptions 

regarding the RIGID and MFNN1–4 methods. Pairs of values with different letters are 

significantly different within a given MMH task type, and error bars indicate 95% 

confidence intervals. 
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Figure 3. Peak absolute errors (PAE) in the AP (Top) and the ML (Bottom) directions for 

each MMH task type, with respect to the different methods for . Pairs of values with 

different letters are significantly different within a given MMH task type, and error bars 

indicate 95% confidence intervals. 
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Figure 4. Coefficients of determination (r2) in the AP (Top) and the ML (Bottom) 

directions for each MMH task type with respect to the different methods for . Pairs 

of values with different letters are significantly different within a given MMH task type, 

and error bars indicate 95% confidence intervals. 

 

 

4. Discussion 

This study examined two different approaches—rigid body transformation, and nonlinear mapping 

(MFNN)—to define a transformation between the coordinate systems of an IPM and the shoe itself 

(the latter being essentially equivalent to the global, or motion capture, coordinate system). 

Performance of the two approaches was assessed during several MMH activities. Overall, the results 



Sensors 2014, 14 17004 

 

 

indicated that: (1) performance varied between MMH activity types regardless of the specific approach 

used; and (2) a MFNN performed better than or comparable to the rigid body transformation approach, 

depending on the specific input variable sets used.  

The performance of the different transformation methods to define  varied with the MMH 

activity types. For example, asymmetric lifting resulted typically in larger errors and smaller r2 values 

than the other activities (Figures 2–4). In the case of LLGROUND, LLKNUCKLE, and PushPull, mean 

RMSE values ranged from 6.5/2.3 mm to 16.6/6.8 mm in the AP/ML directions, depending on the 

transformation methods. Such errors are of similar magnitude to errors obtained during gait in  

earlier studies, which have reported mean RMSE values of 6.1/1.3 mm–13.7/7.3 mm in the AP/ML  

directions [10,17,18]. Chumanov et al. [17] and Fradet et al. [15] highlighted that relatively larger 

errors are obtained during the toe-off and/or the heel-strike phase of gait, and Fradet et al. further 

indicated that a potential error source is the deformation of shoes and insoles at these gait phases. The 

relatively poorer performance observed here for LLASYM, therefore, could be explained by the fact that 

LLASYM requires more complex foot movements (e.g., turning, rolling, etc.) than the other activities. In 

addition, training for  was completed using only simple lifting activities (LLGROUND and 

LLKNUCKLE), and which also likely contributed to a poorer performance for LLASYM.  

Use of a rigid body assumption to define the relationship between the insole and the shoe 

coordinate system may not be strictly valid, for at least two reasons. First, following the two-fold  

cross-validation, the rigid body transformation matrix was defined with one replication of LLGROUND 

and LLKNUCKLE, and tested with the other replication of all MMH activities. Therefore, if the rigid body 

assumption is strictly valid, fairly good performance of  can be expected at least for LLGROUND 

and LLKNUCKLE, even though the insole captures only compressive forces (while the force platform 

captures tri-axial forces) and the foot may move inside the shoe during the MMH activities. LLGROUND 

and LLKNUCKLE, however, yielded RMSE and PAE values similar to PushPull (Figures 2,3), and 

smaller values of r2 in the ML direction than PushPull (Figure 4). In this study, all participants wore 

their own athletic shoes during data collection. An athletic shoe insole is pliant and soft, providing 

underfoot cushioning. Such a shoe insole could thus deform to varying degrees, depending on in-shoe 

foot loading patterns. This deformation may weaken the rigid body assumption for . Second, 

two of the nonlinear mapping functions used here (i.e., MFNN3 and MFNN4) typically performed 

better than or comparable to the rigid body transformation matrix (though with some exceptions such 

as r2 values for LLASYM). Recall that MFNN3 and MFNN4 used the ratios of active pressure sensors in 

the eight regions as part of the input variables, and information on such ratios likely reflected in-shoe 

foot loading patterns. It can thus be argued that MFNN3 and MFNN4 were trained to account, to some 

degree, for potential shoe insole deformation during the MMH activities.  

Our study has some limitations of note. The MMH activities were performed in a laboratory 

environment, on a flat and regular surface. Irregularity of the ground surface will influence interactions 

between the shoe and the floor, and subsequently the degree of shoe deformation. Thus, future work is 

needed to assess IPM systems on under more general environmental conditions. In addition, the 

current sample size was somewhat small (i.e., 10 participants). Though our results provided some 

direction for defining , future work is also needed to consider more diverse populations (e.g., 

with obesity, foot deformities, etc.) for the rigid body transformation and nonlinear mapping approaches, 

so as to understand the generalizability of these approaches.  
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5. Conclusions/Outlook 

Two different approaches—rigid body transformation, and nonlinear mapping—were examined to 

define a relationship between the insole and the shoe coordinate system, , and the performance 

of the two approaches were examined during several MMH activities. MMH activity types affected the 

performance of the two approaches, with an asymmetric task (LLASYM) yielding relatively poorer 

performance. The latter was attributed to potential shoe and insole deformations during LLASYM. We 

further argued that the rigid body assumption to define a relationship between the insole and the shoe 

coordinate system may not be strictly valid, and suggested that a nonlinear mapping approach could 

account for potential shoe insole deformation during activities. Though our focus was MMH activities, 

a nonlinear mapping approach may also be effective in investigating postural balance during functional 

ambulation, since ambulatory activities such as stair climbing/descending likely induce shoe insole 

deformation. Existing studies using an IS (instrumented shoe) system [8,23] have reported mean 

RMSE errors or average absolute errors of <10 mm, and which is less than current errors since an IS 

system directly captures forces between the shoe (with externally attached tri-axial transducers) and 

the floor. Therefore, more efforts are needed to improve the performance of the methods to define 

 (e.g., incorporating foot kinematics along with IPM data, solving a transformation matrix, 

 without considering it homogeneous as in [20], etc.). In addition, and as noted in the limitations 

above, future work should examine the performance of methods to define  on different surfaces 

and/or with larger and more diverse populations. 
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